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Abstract
The nonlinear wave equation

∂2T

∂X2
= ∂

∂t

[
∂T

∂t
/(1 + X2 + T 2)2

]
provides a Lagrangian description of one-dimensional stress propagation in a
class of model inhomogeneous ideally hard elastic materials. It is associated
with the geometry of pseudospherical surfaces and, as such, is integrable and
admits an auto-Bäcklund transformation. Here, modulated waves associated
with helicoidal pseudospherical surfaces are investigated.

PACS numbers: 02.30.Ik, 02.40.Hw, 46.40.−f

1. Introduction

In [1], a novel avatar of the classical sine-Gordon equation was introduced which describes
one-dimensional stress propagation in a class of ideally hard inhomogeneous elastic materials
which exhibit locking strain. The classical Bäcklund transformation for the construction of
pseudospherical surfaces was used to induce an auto-Bäcklund transformation for the stress
propagation equation. Subsequently, in [2], the geometric connection with pseudospherical
surfaces was exploited to construct exact solutions of this nonlinear wave equation which
correspond, in turn, to the Beltrami pseudosphere and to a ‘two-soliton’ pseudospherical
surface obtained via a double application of the classical Bäcklund transformation. However,
in the physical (X, t)-space, even in the basic Beltrami pseudosphere case corresponding to a
single-soliton solution of the sine-Gordon equation, the associated exact solution of the stress
propagation equation has complex behaviour with the appearance of shock fronts for certain
parameter ranges. Here, a direct approach involving a base-modulated wave ansatz for the
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stress distribution is adopted. The associated class of exact solutions turns out to correspond to
helicoidal pseudospherical surfaces and, in general, involves elliptic integrals. A phase plane
analysis is undertaken which reveals intriguing features in the ‘small’ and ‘large’ amplitude
limits.

2. A class of ideally hard elastic materials

Here, we review the derivation of the model laws introduced in [1] which are descriptive of
a class of ideally hard elastic inhomogeneous materials. Thus, the Lagrangian equations of
(1+1)-dimensional elasticity are

εt = vX, ρ0vt = TX, (2.1)

together with an appropriate constitutive law, here taken to adopt the form

T = T (ε,X). (2.2)

In the above, T denotes the stress, ε = ρ0/ρ − 1 is the stretch, v is the material velocity, while
ρ and ρ0 designate the density of the elastic medium in its deformed and undeformed states
respectively. X denotes the Lagrangian spatial coordinate and t time. Hereafter, we set ρ0 = 1.
If the constitutive law (2.2) adopts the form

ε = ε(T ,X), (2.3)

then elimination of the material velocity between the constituent Lagrangian equations of (2.1)
leads to the nonlinear wave equation

TXX = (εT Tt )t , (2.4)

where εT = εT |X.
In order to establish a geometric connection, it is observed that the stress propagation

equation (2.4) admits the two elementary conservation laws

yt = TX, yX = εT Tt (2.5)

and

zt = −T + XTX, zX = εT XTt . (2.6)

Any solution T = T (X, t) of the stress propagation equation uniquely determines a surface
� in R

3 with position vector

r =
⎛
⎝x

y

z

⎞
⎠ , x = t. (2.7)

Relations (2.5) and (2.6) may be compactly encapsulated, with (2.4) as their compatibility
condition, in terms of differential forms, namely

dz = −T dx + X dy, εT dT ∧ dX = dx ∧ dy (2.8)

(and, implicitly, dT ∧ dx = dX ∧ dy). Alternatively, if x and y are taken as new independent
variables, then (2.8)1 yields

T = −zx, X = zy, (2.9)

while (2.8)2 becomes

zxxzyy − z2
xy = − 1

εT (−zx, zy)
. (2.10)
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Accordingly, the Gaussian curvature [3]

K = zxxzyy − z2
xy(

1 + z2
x + z2

y

)2 (2.11)

of the surface � is given by

K = − 1(
1 + z2

x + z2
y

)2
εT (−zx, zy)

. (2.12)

The above analysis shows that, in geometric terms, the prescription of the constitutive
laws of the form (2.3) corresponds to a particular choice of the Gaussian curvature

K = K(zx, zy). (2.13)

In the simplest case

K = −1, (2.14)

associated with a pseudospherical surface �, integration of

εT = 1

(1 + X2 + T 2)2
(2.15)

yields the constitutive laws in parametric form, namely

T =
√

1 + X2 tan θ

ε = 1

2(1 + X2)3/2
(θ + sin θ cos θ) + α(X).

(2.16)

Here, we proceed with the condition

T |ε=0 = 0, (2.17)

so that the function of integration α(X) vanishes. Accordingly, we obtain a stress–strain law
T = T (X, ε) in the implicit form

ε = 1

2(1 + X2)3/2

[
arctan

(
T√

1 + X2

)
+

T
√

1 + X2

1 + X2 + T 2

]
. (2.18)

The model constitutive law (2.16) associated with pseudospherical surfaces is
characterized by the signal speed

A =
√

Tε = 1 + X2 + T 2, (2.19)

and is such that

Tε → ∞ (2.20)

and

ε → εL = π

4(1 + X2)3/2
(2.21)

as T → ∞ for fixed X. Hence, the model law T = T (ε,X) given parametrically by (2.16)
describes inhomogeneous ideally hard elastic materials with locking strain εL. It is remarked
that ideally hard elastic behaviour is exhibited in the dynamic compression of such materials
as dry sand, saturated soil and clay silt (q.v. [4, 5] and work cited therein).

Insertion of (2.15) into (2.4) now produces the nonlinear wave equation

TXX =
[

Tt

(1 + X2 + T 2)2

]
t

(2.22)

descriptive of (1+1)-dimensional stress propagation in the class of ideally hard elastic materials
with constitutive law given by the parametric relations (2.16). A Bäcklund transformation
which leaves (2.22) invariant is readily constructed via the classical result for pseudospherical
surfaces [1, 6].
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3. Modulated waves and helicoidal pseudospherical surfaces

The nonlinear stress propagation equation (2.22) is privileged in that it is but another avatar
of the classical integrable sine-Gordon equation

ωuv = sin ω, (3.1)

where u and v constitute asymptotic coordinates on the pseudospherical surface �. The
classical Bäcklund transformation for pseudospherical surfaces may be employed to generate
non-trivial solutions of (2.22) corresponding to solitons and breathers of the sine-Gordon
equation (3.1). The action of the Bäcklund transformation on the nonlinear wave equation
(2.22) has been analysed in [2]. Here, we adopt a direct approach which delivers modulated
travelling wave solutions. These may then be used as seeds in the iterative application of the
Bäcklund transformation. Thus, if we introduce the modulated travelling wave ansatz

T =
√

1 + X2
(t − S(X)), (3.2)

it is seen that

T =
√

1 + X2
(s), s = t − A arctan X, (3.3)

and 
 is determined by the nonlinear ordinary differential equation

A2
′′ + 
 =
[


′

(1 + 
2)2

]′
(3.4)

or, equivalently,


′′ = −

(1 + 
2)3 + 4
′2

(1 + 
2)[A2(1 + 
2)2 − 1]
, (3.5)

where A constitutes an arbitrary constant of integration.
In order to identify the class of pseudospherical surfaces represented by the present class

of modulated waves, we first introduce the integro-differential from[
1

(1 + 
2)2
− A2

]

′ = I [
], I [
](s) =

∫

(s) ds (3.6)

of the second-order equation (3.4). It is then readily verified that the potentials y and z defined
by relations (2.5) and (2.6) are given explicitly by

y = I [
] sin ρ − A
 cos ρ, z = −I [
] cos ρ − A
 sin ρ, (3.7)

where

sin ρ = X√
1 + X2

, cos ρ = 1√
1 + X2

(3.8)

with irrelevant constants of integration being omitted. Thus, it is deduced that

r2 := y2 + z2 = I 2[
] + A2
2 =: h(s) = h(t − Aρ), (3.9)

and if p(s) is introduced according to

A tan p = I [
]



, (3.10)

then
z

y
= tan(p + ρ) =: tan φ. (3.11)

Combination of relations (3.9) and (3.11) now shows that

x = t = k(r2) + Aφ (3.12)

4



J. Phys. A: Math. Theor. 43 (2010) 105206 W K Schief and C Rogers

for some function k depending on h and p. Hence, the position vector (2.7) adopts the form⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝k(r2) + Aφ

r cos φ

r sin φ

⎞
⎠ , (3.13)

which corresponds to a class of helicoidal pseudospherical surfaces with pitch 2πA (see [3]).
Indeed, the general class of helicoidal pseudospherical surfaces may be generated via the
modulated wave ansatz (3.2). In terms of the classical sine-Gordon equation (3.1), these
helicoidal surfaces correspond to the pendulum reduction,

cω′′ = sin ω, ω = ω(u + cv), c ∈ R, (3.14)

with general solution expressible in terms of Jacobi elliptic functions.

4. Elliptic integral reduction. Phase plane analysis

The nonlinear 
-equation (3.4) admits the first integral


′2 = (1 + 
2)3[−A2(1 + 
2)2 + B(1 + 
2) − 1]

[A2(1 + 
2)2 − 1]2
, (4.1)

whence

α′ = ±R(α,
√

P4(α)), α = 
2, (4.2)

where R is a rational function of its arguments and P4(α) is a polynomial of degree 4.
Accordingly,

s = t − A arctan X = E(
2), (4.3)

where E denotes the elliptic integral

E = ±
∫

dα

R(α,
√

P4(α))
. (4.4)

Thus, the general solution of (3.4) may in principle be expressed implicitly in terms of elliptic
integrals of the first, second and third kind. However, in view of the opaque nature of such
an implicit solution, it proves instructive to examine its behaviour in the phase plane. In this
connection, it is noted that the second factor in the numerator of (4.1) may be brought into the
form

(B − A2 − 1)(1 + 
2) − 
2[A2
2 + (A2 − 1)] (4.5)

so that, in the case A2 > 1, the first integral (4.1) is valid for

B � A2 + 1. (4.6)

The trajectories in the (
,
′)-phase plane are then closed so that 
 and hence the stress
distribution T is periodic. The orbits are symmetric with respect to the 
- and 
′-axes and
intersect these where


2 = B − 2A2 +
√

B2 − 4A2

2A2
(4.7)

and


′2 = B − A2 − 1

(A2 − 1)2
(4.8)

respectively. The phase portrait for A2 = 2 is displayed in figure 1.
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Figure 1. Phase portrait for A2 = 2.

5. Linear approximation

If T/
√

1 + X2 � 1, then the stress distribution equation (2.22) may be approximated by

TXX = Ttt

(1 + X2)2
(5.1)

and in this case describes uniaxial wave propagation in a linear but inhomogeneous medium.
Here, introduction of the base-modulated wave ansatz (3.2) into (5.1) produces, for A2 > 1, a
harmonic oscillator equation, namely


′′ +



A2 − 1
= 0. (5.2)

The associated (
,
′)-phase plane is accordingly foliated by closed elliptic trajectories
corresponding to its periodic solutions


(s) = 
0 cos

(
s − s0√
A2 − 1

)
. (5.3)

In the nonlinear case, the stress–strain law T = T (X, ε) in the implicit form (2.18), for
the modulated wave (3.2), produces the expression for the stretch,

ε = 1

2(1 + X2)3/2

[
arctan 
 +




1 + 
2

]
. (5.4)

In the present linear approximation with T/
√

1 + X2 = 
 � 1, we obtain the uni-directional
waves

T =
√

1 + X2
(t − A arctan X)

ε = 1

(1 + X2)3/2

(t − A arctan X),

(5.5)

where 
 is given by (5.3). Thus, both the stress and stretch exhibit modulated time-periodic
wave behaviour travelling at a local speed which depends on the station X (cf figure 2).
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0.05
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ε
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X

Figure 2. The linearized stretch exhibiting a single modulated wave displayed at various times for
A = 1.01.

6. Large amplitude limit: phase shift

The nonlinear modulated waves (3.2) exhibit certain intriguing features in a large amplitude
limit. These may be detected by direct inspection of the phase diagram associated with 
. If

 is ‘large’, that is,


2 	 1, (4
′2)(1/3), (6.1)

then (3.5) reduces to


′′ +



A2
= 0. (6.2)

It is noted that the frequency of the harmonic oscillator equation (5.2) is larger than that of
the harmonic oscillator equation (6.2). In view of this observation, it is natural to consider the
initial value problem


(0) = 
0 � 0, 
′(0) = 0, (6.3)

where, a priori, 
 is the solution of the nonlinear equation (3.4). A typical numerical solution
of this initial value problem for an initial value 
0 which compares to unity is shown in
figure 3. The phase portrait (cf figure 4) suggests that the oscillator equation (6.2) is actually
valid in a significantly larger region than that defined by the restriction (6.1). Indeed, it appears
that the solution 
 of (3.4) with trajectory


′2 = (1 + 
2)3[−A2(1 + 
2)2 + B(1 + 
2) − 1]

[A2(1 + 
2)2 − 1]2
(6.4)

and

B = A2
(
1 + 
2

0

)2
+ 1

1 + 
2
0

(6.5)
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–1

–0.5

0

0.5

1

Φ

1 2 3 4 5 6

s

Figure 3. (Numerical) solution of the initial value problem 
0 = 1 associated with the nonlinear
differential equation (3.4) (solid) and the harmonic oscillator equations (5.2), (6.2) (dashed) for
A2 = 2.

tracks the solution 
h of the harmonic oscillator equation (6.2) with trajectory


′2
h = 
2

0 − 
2
h

A2
(6.6)

until 
 reaches a ‘critical value’ of the order of unity even though condition (6.1) is clearly
violated.

In order to make precise the preceding assertion, we now derive an upper bound for the
relative ‘vertical’ deviation of the exact trajectory from the elliptic trajectory, that is,

δ = 
′ − 
′
h


′
h

∣∣∣∣

h=


. (6.7)

Thus, relations (6.4)–(6.6) imply that


′2


′2
h

∣∣∣∣

h=


=
[

1 − 1

A2(1 + 
2)
(
1 + 
2

0

)
] [

1 − 1

A2(1 + 
2)2

]−2

, (6.8)

whence

1 <

[
1 − 1

A2(1 + 
2)2

]−1

� (δ + 1)2 <

[
1 − 1

A2(1 + 
2)2

]−2

(6.9)

since 
2 � 
2
0 and A2 > 1. Accordingly, we obtain the upper bound

0 < δ <
1

(1 + 
2)2 − 1
(6.10)

which is independent of both A and 
0. The numerical values

δ|
=1 < 1
3 , δ|
=2 < 1

24 (6.11)
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–10

–5

5

10

Φ '

–10 –5 5 10

Φ

Figure 4. The trajectories of the solution of the initial value problem 
0 = 10 associated with the
nonlinear differential equation (3.4) (solid) and the harmonic oscillator equation (6.2) (dashed) for
A2 = 2.

therefore prove the above conjecture. It is observed that the maximum values of 
′ and 
′
h

are related by


′


′
h

∣∣∣∣

h=
=0

≈ A2

A2 − 1
(6.12)

for 
2
0 	 1. For instance, the latter ratio is 2 if A2 = 2 as illustrated in figure 4.

The preceding analysis implies that 
 and therefore the corresponding modulated wave
undergoes a phase shift relative to the (modulated) harmonic wave whenever 
 becomes small.
This is indicated in figure 5 for 
0 = 10 and A2 = 2. In order to investigate the behaviour of
the phase shift for large 
0, we focus on the intervals s ∈ [0, σ ] and s ∈ [0, σh], where σ and
σh are the quarter-periods of 
 and 
h respectively. Since

0 < δ <
1

A2(1 + 
2)2 − 1
<

1

(
√

A2 − 1 + |A|
2)2
, (6.13)

we conclude that

�σ = σh − σ =
∫ 0


0

(
1


′
h

− 1


′

)∣∣∣∣

h=


d


<

∫ 0


0

δ


′
h

∣∣∣∣

h=


d


<

∫ 
0

0

|A|√

2

0 − 
2(
√

A2 − 1 + |A|
2)2
d
 = K. (6.14)

The latter indefinite integral may be evaluated explicitly and one obtains

K ∼ c


0
as 
0 → ∞ (6.15)

9
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–10

–5

0

5

10

Φ

2 4 6 8

s

Figure 5. The phase shift of the wave 
 (solid) relative to the harmonic wave 
h (dashed) for

0 = 10 and A2 = 2.

for some positive constant c. Accordingly, the phase shift vanishes as 
0 → ∞. Thus, we
conclude that 
 approximates a harmonic wave for both ‘small’ and ‘large’ initial conditions

0.

7. Superposition of modulated waves

In the linear approximation, a superposition of two identical modulated waves of the type
(5.3), (5.5) travelling in opposite directions produces stationary breather solutions given by

T =
√

1 + X2
̂, ε = 
̂

(1 + X2)3/2
(7.1)

with


̂ = 
̂0

2

[
cos

(
t − A arctan X√

A2 − 1

)
+ cos

(
t + A arctan X√

A2 − 1

)]

= 
̂ cos

(
A arctan X√

A2 − 1

)
cos

(
t√

A2 − 1

)
. (7.2)

A typical stationary breather solution is displayed in figure 6.
It is seen that this class of breathers constitute solutions with initial data

T |t=0 =
√

1 + X2F(X), Tt |t=0 = 0

ε|t=0 = 1

(1 + X2)3/2
F(X), εt |t=0 = 0,

(7.3)

where

F(X) = 
̂0 cos

(
A arctan X√

A2 − 1

)
. (7.4)

10
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ε
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X

Figure 6. The linearized stretch exhibiting a stationary breather displayed at various times for
A = 1.01.

In general, a linear superposition of modulated wave forms of the above type may be introduced,
namely

T =
√

1 + X2

[ ∞∑
n=0


̂n cos

(
t − An arctan X√

A2
n − 1

+ εn

)]
. (7.5)

The nonlinear superposition of modulated waves of the type (3.3), (3.5) by means of the
permutability theorem associated with the classical Bäcklund transformation is involved and
currently under investigation.

8. Concluding remarks

It is noted that, under the transformation

T ∗ = T
√

1 + X2, t∗ = t, X∗ = arctan X, (8.1)

the stress propagation equation (2.22) reduces to the nonlinear telegraphy equation

T ∗
X∗X∗ −

(
T ∗

t∗

(1 + T ∗2)2

)
t∗

+ T ∗ = 0. (8.2)

Accordingly, (8.2) represents yet another integrable avatar of the classical sine-Gordon
equation.
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